STRINGS OF GROUP ENDOMORPHISMS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on central endomorphisms of a group

let $gamma$ be a normal subgroup of the full automorphism group $aut(g)$ of a group $g$‎, ‎and assume that $inn(g)leq gamma$‎. ‎an endomorphism $sigma$ of $g$ is said to be {it $gamma$-central} if $sigma$ induces the the identity on the factor group $g/c_g(gamma)$‎. ‎clearly‎, ‎if $gamma=inn(g)$‎, ‎then a $gamma$-central endomorphism is a {it central} endomorphism‎. ‎in this article the conditi...

متن کامل

Rational Endomorphisms of a Nilpotent Group

Let G be a group. An endomorphism φ of G is called rational if there exist a1, . . . , ar ∈ G and h1, . . . , hr ∈ Z, such that φ(x) = (xa1)1 . . . (xar)r for all x ∈ G. We denote by Endr(G) the group of invertible rational endomorphisms of G. In this note, we prove that G is nilpotent of class c (c ≥ 3) if and only if Endr(G) is nilpotent of class c − 1. Mathematics Subject Classification: 20E...

متن کامل

Circle Endomorphisms, Dual Circles and Thompson’s Group

We construct the dual Cantor set for a degree two expanding map f acting as cover of the circle T onto itself. Then we use the criterion for a continuous function on this Cantor set to be the scaling function of a uniformly asymptotically affine UAA expanding map to show that the scaling function for f descends to a continuous function on a dual circle T∗. We use this representation to view the...

متن کامل

Knuth-Bendix completion of theories of commuting group endomorphisms

Knuth-Bendix completions of the equational theories of k ≥ 2 commuting group endomorphisms are obtained, using automated theorem proving and modern termination checking. This improves on modern implementations of completion, where the orderings implemented cannot orient the commutation rules. The result has applications in decision procedures for automated verification.

متن کامل

Endomorphisms and Product Bases of the Baer-Specker Group

The endomorphism ring of the group of all sequences of integers, the Baer-Specker group, is isomorphic to the ring of row finite infinite matrices over the integers. The product bases of that group are represented by the multiplicative group of invertible elements in that matrix ring. All products in the Baer-Specker group are characterized, and a lemma of László Fuchs regarding such products i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2010

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s0219498810004312